Afrl-pr-wp-tp-2006-275 Sensor Validation Using Nonlinear Minor Component Analysis (preprint)
نویسندگان
چکیده
In this paper, we present a unified framework for sensor validation, which is an extremely important module in the engine health management system. Our approach consists of several key ideas. First, we applied nonlinear minor component analysis (NLMCA) to capture the analytical redundancy between sensors. The obtained NLMCA model is data driven, does not require faulty data, and only utilizes sensor measurements during normal operations. Second, practical fault detection and isolation indices based on Squared Weighted Residuals (SWR) are employed to detect and classify the sensor failures. The SWR yields more accurate and robust detection and isolation results as compared to the conventional Squared Prediction Error (SPE). Third, an accurate fault size estimation method based on reverse scanning of the residuals is proposed. Extensive simulations based on a nonlinear prototype non-augmented turbofan engine model have been performed to validate the excellent performance of our approach.
منابع مشابه
Afrl-rx-wp-tp-2011-4404 Model Based Studies of the Split D Differential Eddy Current Probe (preprint)
This paper presents preliminary modeling work of split D differential probes, in both regular differential and reflection modes. This work is a prelude for a more in-depth model validation study using split D type probes. A modeling comparison is made for both air and ferrite cores. Lastly, numerical and experimental results are compared.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007