Afrl-pr-wp-tp-2006-275 Sensor Validation Using Nonlinear Minor Component Analysis (preprint)

نویسندگان

  • Roger Xu
  • Guangfan Zhang
  • Xiaodong Zhang
  • Leonard Haynes
  • Chiman Kwan
  • Kenneth Semega
چکیده

In this paper, we present a unified framework for sensor validation, which is an extremely important module in the engine health management system. Our approach consists of several key ideas. First, we applied nonlinear minor component analysis (NLMCA) to capture the analytical redundancy between sensors. The obtained NLMCA model is data driven, does not require faulty data, and only utilizes sensor measurements during normal operations. Second, practical fault detection and isolation indices based on Squared Weighted Residuals (SWR) are employed to detect and classify the sensor failures. The SWR yields more accurate and robust detection and isolation results as compared to the conventional Squared Prediction Error (SPE). Third, an accurate fault size estimation method based on reverse scanning of the residuals is proposed. Extensive simulations based on a nonlinear prototype non-augmented turbofan engine model have been performed to validate the excellent performance of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007